Nuprl Lemma : comb_for_gcd_wf
λa,b,z. gcd(a;b) ∈ a:ℤ ⟶ b:ℤ ⟶ (↓True) ⟶ ℤ
Proof
Definitions occuring in Statement : 
gcd: gcd(a;b)
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
gcd_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
isectElimination, 
Error :inhabitedIsType, 
intEquality
Latex:
\mlambda{}a,b,z.  gcd(a;b)  \mmember{}  a:\mBbbZ{}  {}\mrightarrow{}  b:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbZ{}
Date html generated:
2019_06_20-AM-11_25_25
Last ObjectModification:
2018_09_28-AM-00_34_13
Theory : arithmetic
Home
Index