Nuprl Lemma : comb_for_gcd_wf

λa,b,z. gcd(a;b) ∈ a:ℤ ⟶ b:ℤ ⟶ (↓True) ⟶ ℤ


Proof




Definitions occuring in Statement :  gcd: gcd(a;b) squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop:
Lemmas referenced :  gcd_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  isectElimination Error :inhabitedIsType,  intEquality

Latex:
\mlambda{}a,b,z.  gcd(a;b)  \mmember{}  a:\mBbbZ{}  {}\mrightarrow{}  b:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbZ{}



Date html generated: 2019_06_20-AM-11_25_25
Last ObjectModification: 2018_09_28-AM-00_34_13

Theory : arithmetic


Home Index