Step
*
1
1
1
of Lemma
div_bounds_1
1. a : ℤ
2. a ≥ 0
3. n : ℤ
4. 0 < n
5. a = ((n * (a ÷ n)) + (a rem n)) ∈ ℤ
6. 0 ≤ (a rem n)
7. a rem n < n
8. ¬(0 ≤ (a ÷ n))
9. (n * (a ÷ n)) ≤ ((-1) * n)
⊢ 0 ≤ (a ÷ n)
BY
{ (Add ⌜a rem n⌝ (-1)⋅ THEN RevHypSubst' 5 (-1)) }
1
1. a : ℤ
2. a ≥ 0
3. n : ℤ
4. 0 < n
5. a = ((n * (a ÷ n)) + (a rem n)) ∈ ℤ
6. 0 ≤ (a rem n)
7. a rem n < n
8. ¬(0 ≤ (a ÷ n))
9. (n * (a ÷ n)) ≤ ((-1) * n)
10. a ≤ (((-1) * n) + (a rem n))
⊢ 0 ≤ (a ÷ n)
Latex:
Latex:
1. a : \mBbbZ{}
2. a \mgeq{} 0
3. n : \mBbbZ{}
4. 0 < n
5. a = ((n * (a \mdiv{} n)) + (a rem n))
6. 0 \mleq{} (a rem n)
7. a rem n < n
8. \mneg{}(0 \mleq{} (a \mdiv{} n))
9. (n * (a \mdiv{} n)) \mleq{} ((-1) * n)
\mvdash{} 0 \mleq{} (a \mdiv{} n)
By
Latex:
(Add \mkleeneopen{}a rem n\mkleeneclose{} (-1)\mcdot{} THEN RevHypSubst' 5 (-1))
Home
Index