Nuprl Lemma : general_add_com
∀[a:ℤ]. ∀[b:Top]. (a + b ~ b + a)
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
top: Top
,
add: n + m
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
add-commutes,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
sqequalAxiom,
sqequalRule,
isect_memberEquality,
because_Cache,
intEquality
Latex:
\mforall{}[a:\mBbbZ{}]. \mforall{}[b:Top]. (a + b \msim{} b + a)
Date html generated:
2016_05_13-PM-03_39_05
Last ObjectModification:
2015_12_26-AM-09_41_24
Theory : arithmetic
Home
Index