Nuprl Lemma : member-int_seg
∀[i,j,x:ℤ].  (x ∈ {i..j-}) supposing ((i ≤ x) and x < j)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
Lemmas referenced : 
istype-le, 
istype-less_than, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :dependent_set_memberEquality_alt, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
Error :productIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType
Latex:
\mforall{}[i,j,x:\mBbbZ{}].    (x  \mmember{}  \{i..j\msupminus{}\})  supposing  ((i  \mleq{}  x)  and  x  <  j)
Date html generated:
2019_06_20-AM-11_23_46
Last ObjectModification:
2018_10_25-PM-00_59_43
Theory : arithmetic
Home
Index