Nuprl Lemma : seq-cons-len

[T:Type]. ∀[a:Top]. ∀[s:sequence(T)].  (||seq-cons(a;s)|| ||s|| 1)


Proof




Definitions occuring in Statement :  seq-cons: seq-cons(a;s) seq-len: ||s|| sequence: sequence(T) uall: [x:A]. B[x] top: Top add: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sequence: sequence(T) seq-len: ||s|| seq-cons: seq-cons(a;s) pi1: fst(t)
Lemmas referenced :  sequence_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesis sqequalAxiom extract_by_obid isectElimination hypothesisEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:Top].  \mforall{}[s:sequence(T)].    (||seq-cons(a;s)||  \msim{}  ||s||  +  1)



Date html generated: 2018_07_25-PM-01_29_05
Last ObjectModification: 2018_06_12-PM-10_31_11

Theory : arithmetic


Home Index