Nuprl Lemma : seq-cons-len
∀[T:Type]. ∀[a:Top]. ∀[s:sequence(T)].  (||seq-cons(a;s)|| ~ ||s|| + 1)
Proof
Definitions occuring in Statement : 
seq-cons: seq-cons(a;s)
, 
seq-len: ||s||
, 
sequence: sequence(T)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sequence: sequence(T)
, 
seq-len: ||s||
, 
seq-cons: seq-cons(a;s)
, 
pi1: fst(t)
Lemmas referenced : 
sequence_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:Top].  \mforall{}[s:sequence(T)].    (||seq-cons(a;s)||  \msim{}  ||s||  +  1)
Date html generated:
2018_07_25-PM-01_29_05
Last ObjectModification:
2018_06_12-PM-10_31_11
Theory : arithmetic
Home
Index