Nuprl Lemma : free-from-atom-pair
∀[a:Atom1]. ∀[X,Y:Type]. ∀[x:X]. ∀[y:Y].  (a#<x, y>:X × Y) supposing (a#y:Y and a#x:X)
Proof
Definitions occuring in Statement : 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
free-from-atom_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
freeFromAtomAxiom, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
atomnEquality, 
freeFromAtomApplication, 
freeFromAtomTriviality, 
lambdaEquality, 
independent_pairEquality
Latex:
\mforall{}[a:Atom1].  \mforall{}[X,Y:Type].  \mforall{}[x:X].  \mforall{}[y:Y].    (a\#<x,  y>:X  \mtimes{}  Y)  supposing  (a\#y:Y  and  a\#x:X)
Date html generated:
2016_05_13-PM-03_21_34
Last ObjectModification:
2015_12_26-AM-09_11_56
Theory : atom_1
Home
Index