Nuprl Lemma : free-from-atom-subtype

[A,B:Type].  ∀[x:A]. ∀[a:Atom1].  a#x:B supposing a#x:A supposing A ⊆B


Proof




Definitions occuring in Statement :  free-from-atom: a#x:T atom: Atom$n uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop:
Lemmas referenced :  free-from-atom_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule freeFromAtomApplication freeFromAtomTriviality lambdaEquality hypothesisEquality applyEquality hypothesis sqequalHypSubstitution freeFromAtomAxiom extract_by_obid isectElimination thin isect_memberEquality because_Cache equalityTransitivity equalitySymmetry atomnEquality universeEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}[x:A].  \mforall{}[a:Atom1].    a\#x:B  supposing  a\#x:A  supposing  A  \msubseteq{}r  B



Date html generated: 2019_06_20-AM-11_20_26
Last ObjectModification: 2018_09_14-AM-10_41_36

Theory : atom_1


Home Index