Nuprl Lemma : free-from-atom-subtype
∀[A,B:Type].  ∀[x:A]. ∀[a:Atom1].  a#x:B supposing a#x:A supposing A ⊆r B
Proof
Definitions occuring in Statement : 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
free-from-atom_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
freeFromAtomApplication, 
freeFromAtomTriviality, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalHypSubstitution, 
freeFromAtomAxiom, 
extract_by_obid, 
isectElimination, 
thin, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
atomnEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}[x:A].  \mforall{}[a:Atom1].    a\#x:B  supposing  a\#x:A  supposing  A  \msubseteq{}r  B
Date html generated:
2019_06_20-AM-11_20_26
Last ObjectModification:
2018_09_14-AM-10_41_36
Theory : atom_1
Home
Index