Nuprl Lemma : free-from-atom2-subtype

[A,B:Type].  ∀[x:A]. ∀[a:Atom2].  a#x:B supposing a#x:A supposing A ⊆B


Proof




Definitions occuring in Statement :  free-from-atom: a#x:T atom: Atom$n uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T prop: subtype_rel: A ⊆B
Lemmas referenced :  free-from-atom_wf2 subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule freeFromAtomApplication freeFromAtomTriviality Error :lambdaEquality_alt,  applyEquality Error :inhabitedIsType,  Error :universeIsType,  because_Cache atomnEquality universeEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}[x:A].  \mforall{}[a:Atom2].    a\#x:B  supposing  a\#x:A  supposing  A  \msubseteq{}r  B



Date html generated: 2019_06_20-AM-11_20_27
Last ObjectModification: 2018_09_27-PM-06_41_48

Theory : atom_1


Home Index