Nuprl Lemma : free-from-atom_wf2
∀[T:Type]. ∀[x:T]. ∀[a:Atom2].  (a#x:T ∈ ℙ)
Proof
Definitions occuring in Statement : 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
freeFromAtomEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
atomnEquality, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
instantiate, 
extract_by_obid, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[a:Atom2].    (a\#x:T  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_20_21
Last ObjectModification:
2018_10_16-PM-01_50_49
Theory : atom_1
Home
Index