Step
*
1
1
of Lemma
cWO-rel-path-barred
1. T : Type
2. t : T
3. R : T ⟶ T ⟶ ℙ
4. ∀a,b,c:T. (R[a;b]
⇒ R[b;c]
⇒ R[a;c])
5. alpha : ℕ ⟶ (T?)@i
6. ∀x:ℕ. ((0 < x ∧ (↑isl(alpha x)))
⇒ ((↑isl(alpha (x - 1))) ∧ (R outl(alpha (x - 1)) outl(alpha x))))
7. m : ℕ@i
8. ∃n:ℕm. (¬R[case alpha n of inl(x) => x | inr(x) => t;case alpha m of inl(x) => x | inr(x) => t])
⊢ ↓∃m:ℕ. (0 < m ∧ (↑isr(alpha (m - 1))))
BY
{ (Decide ⌜∃m:ℕm + 2. (0 < m ∧ (↑isr(alpha (m - 1))))⌝⋅ THENA Auto) }
1
1. T : Type
2. t : T
3. R : T ⟶ T ⟶ ℙ
4. ∀a,b,c:T. (R[a;b]
⇒ R[b;c]
⇒ R[a;c])
5. alpha : ℕ ⟶ (T?)@i
6. ∀x:ℕ. ((0 < x ∧ (↑isl(alpha x)))
⇒ ((↑isl(alpha (x - 1))) ∧ (R outl(alpha (x - 1)) outl(alpha x))))
7. m : ℕ@i
8. ∃n:ℕm. (¬R[case alpha n of inl(x) => x | inr(x) => t;case alpha m of inl(x) => x | inr(x) => t])
9. ∃m:ℕm + 2. (0 < m ∧ (↑isr(alpha (m - 1))))
⊢ ↓∃m:ℕ. (0 < m ∧ (↑isr(alpha (m - 1))))
2
1. T : Type
2. t : T
3. R : T ⟶ T ⟶ ℙ
4. ∀a,b,c:T. (R[a;b]
⇒ R[b;c]
⇒ R[a;c])
5. alpha : ℕ ⟶ (T?)@i
6. ∀x:ℕ. ((0 < x ∧ (↑isl(alpha x)))
⇒ ((↑isl(alpha (x - 1))) ∧ (R outl(alpha (x - 1)) outl(alpha x))))
7. m : ℕ@i
8. ∃n:ℕm. (¬R[case alpha n of inl(x) => x | inr(x) => t;case alpha m of inl(x) => x | inr(x) => t])
9. ¬(∃m:ℕm + 2. (0 < m ∧ (↑isr(alpha (m - 1)))))
⊢ ↓∃m:ℕ. (0 < m ∧ (↑isr(alpha (m - 1))))
Latex:
Latex:
1. T : Type
2. t : T
3. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
4. \mforall{}a,b,c:T. (R[a;b] {}\mRightarrow{} R[b;c] {}\mRightarrow{} R[a;c])
5. alpha : \mBbbN{} {}\mrightarrow{} (T?)@i
6. \mforall{}x:\mBbbN{}
((0 < x \mwedge{} (\muparrow{}isl(alpha x))) {}\mRightarrow{} ((\muparrow{}isl(alpha (x - 1))) \mwedge{} (R outl(alpha (x - 1)) outl(alpha x))))
7. m : \mBbbN{}@i
8. \mexists{}n:\mBbbN{}m. (\mneg{}R[case alpha n of inl(x) => x | inr(x) => t;case alpha m of inl(x) => x | inr(x) => t])
\mvdash{} \mdownarrow{}\mexists{}m:\mBbbN{}. (0 < m \mwedge{} (\muparrow{}isr(alpha (m - 1))))
By
Latex:
(Decide \mkleeneopen{}\mexists{}m:\mBbbN{}m + 2. (0 < m \mwedge{} (\muparrow{}isr(alpha (m - 1))))\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index