Nuprl Lemma : apply-ifthenelse-pi1
∀[T1,U1,T2,U2:Type]. ∀[x:T1 × U1]. ∀[y:T2 × U2]. ∀[b:𝔹].
  (fst(if b then x else y fi ) ~ if b then fst(x) else fst(y) fi )
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
product: x:A × B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bool: 𝔹
, 
ifthenelse: if b then t else f fi 
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
bool_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
unionElimination, 
thin, 
sqequalRule, 
cut, 
lemma_by_obid, 
hypothesis, 
because_Cache, 
productEquality, 
hypothesisEquality, 
universeEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isect_memberEquality, 
isectElimination
Latex:
\mforall{}[T1,U1,T2,U2:Type].  \mforall{}[x:T1  \mtimes{}  U1].  \mforall{}[y:T2  \mtimes{}  U2].  \mforall{}[b:\mBbbB{}].
    (fst(if  b  then  x  else  y  fi  )  \msim{}  if  b  then  fst(x)  else  fst(y)  fi  )
Date html generated:
2016_05_13-PM-04_01_29
Last ObjectModification:
2015_12_26-AM-10_48_54
Theory : bool_1
Home
Index