Nuprl Lemma : apply-ifthenelse-pi2

[T1,U1,T2,U2:Type]. ∀[x:T1 × U1]. ∀[y:T2 × U2]. ∀[b:𝔹].
  (snd(if then else fi if then snd(x) else snd(y) fi )


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] pi2: snd(t) product: x:A × B[x] universe: Type sqequal: t
Definitions unfolded in proof :  bool: 𝔹 ifthenelse: if then else fi  member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  bool_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity unionElimination thin sqequalRule cut lemma_by_obid hypothesis because_Cache productEquality hypothesisEquality universeEquality isect_memberFormation introduction sqequalAxiom isect_memberEquality isectElimination

Latex:
\mforall{}[T1,U1,T2,U2:Type].  \mforall{}[x:T1  \mtimes{}  U1].  \mforall{}[y:T2  \mtimes{}  U2].  \mforall{}[b:\mBbbB{}].
    (snd(if  b  then  x  else  y  fi  )  \msim{}  if  b  then  snd(x)  else  snd(y)  fi  )



Date html generated: 2016_05_13-PM-04_01_36
Last ObjectModification: 2015_12_26-AM-10_49_16

Theory : bool_1


Home Index