Nuprl Lemma : apply-ifthenelse

[T,U:Type]. ∀[f:T ⟶ U]. ∀[b:𝔹]. ∀[x,y:T].  (f[if then else fi if then f[x] else f[y] fi )


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  bool: 𝔹 ifthenelse: if then else fi  member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  bool_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity unionElimination thin sqequalRule hypothesisEquality because_Cache cut lemma_by_obid hypothesis functionEquality universeEquality isect_memberFormation introduction sqequalAxiom isect_memberEquality isectElimination

Latex:
\mforall{}[T,U:Type].  \mforall{}[f:T  {}\mrightarrow{}  U].  \mforall{}[b:\mBbbB{}].  \mforall{}[x,y:T].
    (f[if  b  then  x  else  y  fi  ]  \msim{}  if  b  then  f[x]  else  f[y]  fi  )



Date html generated: 2016_05_13-PM-04_01_23
Last ObjectModification: 2015_12_26-AM-10_49_03

Theory : bool_1


Home Index