Nuprl Lemma : bnot_thru_band

[p,q:Top].  b(p ∧b q) bp) ∨bbq))


Proof




Definitions occuring in Statement :  bor: p ∨bq band: p ∧b q bnot: ¬bb uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bnot: ¬bb ifthenelse: if then else fi  band: p ∧b q so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a bfalse: ff it: btrue: tt bor: p ∨bq
Lemmas referenced :  lifting-strict-decide istype-void strict4-decide top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed Error :isect_memberEquality_alt,  voidElimination hypothesis independent_isectElimination axiomSqEquality Error :inhabitedIsType,  hypothesisEquality Error :universeIsType

Latex:
\mforall{}[p,q:Top].    (\mneg{}\msubb{}(p  \mwedge{}\msubb{}  q)  \msim{}  (\mneg{}\msubb{}p)  \mvee{}\msubb{}(\mneg{}\msubb{}q))



Date html generated: 2019_06_20-PM-01_04_48
Last ObjectModification: 2019_06_20-PM-01_00_55

Theory : bool_1


Home Index