Nuprl Lemma : bnot_thru_band
∀[p,q:Top].  (¬b(p ∧b q) ~ (¬bp) ∨b(¬bq))
Proof
Definitions occuring in Statement : 
bor: p ∨bq
, 
band: p ∧b q
, 
bnot: ¬bb
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
band: p ∧b q
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
bfalse: ff
, 
it: ⋅
, 
btrue: tt
, 
bor: p ∨bq
Lemmas referenced : 
lifting-strict-decide, 
istype-void, 
strict4-decide, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
independent_isectElimination, 
axiomSqEquality, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :universeIsType
Latex:
\mforall{}[p,q:Top].    (\mneg{}\msubb{}(p  \mwedge{}\msubb{}  q)  \msim{}  (\mneg{}\msubb{}p)  \mvee{}\msubb{}(\mneg{}\msubb{}q))
Date html generated:
2019_06_20-PM-01_04_48
Last ObjectModification:
2019_06_20-PM-01_00_55
Theory : bool_1
Home
Index