Nuprl Lemma : bool_ind
∀[P:𝔹 ⟶ ℙ]. (P[ff] 
⇒ P[tt] 
⇒ {∀b:𝔹. P[b]})
Proof
Definitions occuring in Statement : 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
bool_wf, 
btrue_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination
Latex:
\mforall{}[P:\mBbbB{}  {}\mrightarrow{}  \mBbbP{}].  (P[ff]  {}\mRightarrow{}  P[tt]  {}\mRightarrow{}  \{\mforall{}b:\mBbbB{}.  P[b]\})
Date html generated:
2019_06_20-AM-11_31_18
Last ObjectModification:
2018_09_26-AM-11_16_09
Theory : bool_1
Home
Index