Nuprl Lemma : bool_ind

[P:𝔹 ⟶ ℙ]. (P[ff]  P[tt]  {∀b:𝔹P[b]})


Proof




Definitions occuring in Statement :  bfalse: ff btrue: tt bool: 𝔹 uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff
Lemmas referenced :  bool_wf btrue_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid hypothesis applyEquality hypothesisEquality Error :functionIsType,  Error :universeIsType,  universeEquality sqequalHypSubstitution unionElimination thin equalityElimination

Latex:
\mforall{}[P:\mBbbB{}  {}\mrightarrow{}  \mBbbP{}].  (P[ff]  {}\mRightarrow{}  P[tt]  {}\mRightarrow{}  \{\mforall{}b:\mBbbB{}.  P[b]\})



Date html generated: 2019_06_20-AM-11_31_18
Last ObjectModification: 2018_09_26-AM-11_16_09

Theory : bool_1


Home Index