Nuprl Lemma : bor-inr
∀[a,b:Top].  ((inr a ) ∨bb ~ b)
Proof
Definitions occuring in Statement : 
bor: p ∨bq
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
inr: inr x 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[a,b:Top].    ((inr  a  )  \mvee{}\msubb{}b  \msim{}  b)
Date html generated:
2016_05_13-PM-03_59_21
Last ObjectModification:
2015_12_26-AM-10_50_24
Theory : bool_1
Home
Index