Nuprl Lemma : comb_for_b2i_wf

λb,z. b2i(b) ∈ b:𝔹 ⟶ (↓True) ⟶ ℤ


Proof




Definitions occuring in Statement :  b2i: b2i(b) bool: 𝔹 squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  b2i_wf squash_wf true_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry

Latex:
\mlambda{}b,z.  b2i(b)  \mmember{}  b:\mBbbB{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbZ{}



Date html generated: 2016_05_13-PM-03_55_57
Last ObjectModification: 2015_12_26-AM-10_52_52

Theory : bool_1


Home Index