Nuprl Lemma : comb_for_bimplies_wf
λp,q,z. (p 
⇒b q) ∈ p:𝔹 ⟶ q:𝔹 supposing ↑p ⟶ (↓True) ⟶ 𝔹
Proof
Definitions occuring in Statement : 
bimplies: p 
⇒b q
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
bimplies_wf, 
squash_wf, 
true_wf, 
assert_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
sqequalRule, 
Error :isectIsType, 
Error :inhabitedIsType
Latex:
\mlambda{}p,q,z.  (p  {}\mRightarrow{}\msubb{}  q)  \mmember{}  p:\mBbbB{}  {}\mrightarrow{}  q:\mBbbB{}  supposing  \muparrow{}p  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbB{}
Date html generated:
2019_06_20-AM-11_31_15
Last ObjectModification:
2018_10_09-AM-09_29_13
Theory : bool_1
Home
Index