Nuprl Lemma : comb_for_bimplies_wf

λp,q,z. (p b q) ∈ p:𝔹 ⟶ q:𝔹 supposing ↑p ⟶ (↓True) ⟶ 𝔹


Proof




Definitions occuring in Statement :  bimplies: b q assert: b bool: 𝔹 uimplies: supposing a squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: uimplies: supposing a
Lemmas referenced :  bimplies_wf squash_wf true_wf assert_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  sqequalRule Error :isectIsType,  Error :inhabitedIsType

Latex:
\mlambda{}p,q,z.  (p  {}\mRightarrow{}\msubb{}  q)  \mmember{}  p:\mBbbB{}  {}\mrightarrow{}  q:\mBbbB{}  supposing  \muparrow{}p  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbB{}



Date html generated: 2019_06_20-AM-11_31_15
Last ObjectModification: 2018_10_09-AM-09_29_13

Theory : bool_1


Home Index