Nuprl Lemma : bimplies_wf
∀[p:𝔹]. ∀[q:𝔹 supposing ↑p].  (p ⇒b q ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bimplies: p ⇒b q, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bimplies: p ⇒b q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
bor: p ∨bq, 
bfalse: ff, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x], 
true: True, 
istype: istype(T)
Lemmas referenced : 
isect_subtype_rel_trivial, 
true_wf, 
bool_wf, 
btrue_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
isectElimination, 
hypothesis, 
because_Cache, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
independent_isectElimination, 
independent_pairFormation, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isectIsType, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt
Latex:
\mforall{}[p:\mBbbB{}].  \mforall{}[q:\mBbbB{}  supposing  \muparrow{}p].    (p  {}\mRightarrow{}\msubb{}  q  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-AM-11_31_13
Last ObjectModification:
2018_10_08-PM-05_04_03
Theory : bool_1
Home
Index