Nuprl Lemma : bimplies_wf

[p:𝔹]. ∀[q:𝔹 supposing ↑p].  (p b q ∈ 𝔹)


Proof




Definitions occuring in Statement :  bimplies: b q assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bool: 𝔹 unit: Unit it: btrue: tt bimplies: b q assert: b ifthenelse: if then else fi  bnot: ¬bb bor: p ∨bq bfalse: ff subtype_rel: A ⊆B uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] true: True istype: istype(T)
Lemmas referenced :  isect_subtype_rel_trivial true_wf bool_wf btrue_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution unionElimination thin equalityElimination sqequalRule hypothesisEquality applyEquality extract_by_obid isectElimination hypothesis because_Cache Error :lambdaEquality_alt,  Error :universeIsType,  independent_isectElimination independent_pairFormation natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry Error :isectIsType,  Error :inhabitedIsType,  Error :isect_memberEquality_alt

Latex:
\mforall{}[p:\mBbbB{}].  \mforall{}[q:\mBbbB{}  supposing  \muparrow{}p].    (p  {}\mRightarrow{}\msubb{}  q  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-AM-11_31_13
Last ObjectModification: 2018_10_08-PM-05_04_03

Theory : bool_1


Home Index