Nuprl Lemma : ispair-implies-sq

[t:Base]. ~ <fst(t), snd(t)> supposing ispair(t) tt


Proof




Definitions occuring in Statement :  bfalse: ff btrue: tt uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) ispair: if is pair then otherwise b pair: <a, b> base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ btrue: tt
Lemmas referenced :  base_wf assert_of_tt ispair-implies is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalRule divergentSqle sqleReflexivity lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed hypothesisEquality independent_isectElimination callbyvalueIspair sqequalAxiom sqequalIntensionalEquality baseApply closedConclusion isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[t:Base].  t  \msim{}  <fst(t),  snd(t)>  supposing  ispair(t)  \msim{}  tt



Date html generated: 2016_05_13-PM-03_27_28
Last ObjectModification: 2016_01_14-PM-06_43_29

Theory : call!by!value_1


Home Index