Nuprl Lemma : strict-strict1
∀F:Base. (strict(F) 
⇒ strict1(λx.F[x]))
Proof
Definitions occuring in Statement : 
strict1: strict1(F)
, 
strict: strict(F)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
base: Base
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
strict: strict(F)
, 
so_apply: x[s]
, 
strict1: strict1(F)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
guard: {T}
, 
or: P ∨ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
Lemmas referenced : 
strict_wf, 
base_wf, 
is-exception_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
independent_pairFormation, 
hypothesis, 
cut, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
inrFormation, 
lemma_by_obid, 
isectElimination, 
introduction, 
imageMemberEquality, 
baseClosed, 
baseApply, 
closedConclusion
Latex:
\mforall{}F:Base.  (strict(F)  {}\mRightarrow{}  strict1(\mlambda{}x.F[x]))
Date html generated:
2016_05_13-PM-03_23_51
Last ObjectModification:
2016_01_14-PM-06_45_41
Theory : call!by!value_1
Home
Index