Nuprl Lemma : canonicalizable-base
∀[T:Type]. ((T ⊆r Base) ⇒ canonicalizable(T))
Proof
Definitions occuring in Statement : 
canonicalizable: canonicalizable(T), 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
base: Base, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B
Lemmas referenced : 
canonicalizable-iff, 
subtype_rel_wf, 
base_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
applyEquality, 
hypothesis, 
sqequalRule, 
equalityIstype, 
because_Cache, 
sqequalBase, 
equalitySymmetry, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  canonicalizable(T))
Date html generated:
2019_10_15-AM-10_20_02
Last ObjectModification:
2019_08_29-AM-10_57_46
Theory : call!by!value_2
Home
Index