Nuprl Lemma : canonicalizable-base
∀[T:Type]. ((T ⊆r Base) 
⇒ canonicalizable(T))
Proof
Definitions occuring in Statement : 
canonicalizable: canonicalizable(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
canonicalizable-iff, 
subtype_rel_wf, 
base_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
applyEquality, 
hypothesis, 
sqequalRule, 
equalityIstype, 
because_Cache, 
sqequalBase, 
equalitySymmetry, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  canonicalizable(T))
Date html generated:
2019_10_15-AM-10_20_02
Last ObjectModification:
2019_08_29-AM-10_57_46
Theory : call!by!value_2
Home
Index