Nuprl Lemma : canonicalizable-base

[T:Type]. ((T ⊆Base)  canonicalizable(T))


Proof




Definitions occuring in Statement :  canonicalizable: canonicalizable(T) subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q all: x:A. B[x] exists: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  canonicalizable-iff subtype_rel_wf base_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_functionElimination dependent_pairFormation_alt applyEquality hypothesis sqequalRule equalityIstype because_Cache sqequalBase equalitySymmetry universeIsType instantiate universeEquality

Latex:
\mforall{}[T:Type].  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  canonicalizable(T))



Date html generated: 2019_10_15-AM-10_20_02
Last ObjectModification: 2019_08_29-AM-10_57_46

Theory : call!by!value_2


Home Index