Nuprl Lemma : canonicalizable-iff

[T:Type]. (canonicalizable(T) ⇐⇒ ∀t:T. ∃x:Base. (t x ∈ T))


Proof




Definitions occuring in Statement :  canonicalizable: canonicalizable(T) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] canonicalizable: canonicalizable(T) iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] exists: x:A. B[x] member: t ∈ T rev_implies:  Q squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} prop: pi1: fst(t)
Lemmas referenced :  istype-base istype-universe equal_wf iff_weakening_equal trivial-equal squash_wf true_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt independent_pairFormation lambdaFormation_alt universeIsType hypothesisEquality sqequalRule productIsType functionIsType cut introduction extract_by_obid hypothesis because_Cache equalityIstype applyEquality sqequalBase equalitySymmetry instantiate sqequalHypSubstitution isectElimination thin universeEquality productElimination dependent_pairFormation_alt lambdaEquality_alt imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity independent_isectElimination independent_functionElimination promote_hyp rename functionExtensionality inhabitedIsType

Latex:
\mforall{}[T:Type].  (canonicalizable(T)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}t:T.  \mexists{}x:Base.  (t  =  x))



Date html generated: 2019_10_15-AM-10_20_00
Last ObjectModification: 2019_08_29-AM-10_56_34

Theory : call!by!value_2


Home Index