Nuprl Lemma : canonicalizable-iff
∀[T:Type]. (canonicalizable(T) 
⇐⇒ ∀t:T. ∃x:Base. (t = x ∈ T))
Proof
Definitions occuring in Statement : 
canonicalizable: canonicalizable(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
canonicalizable: canonicalizable(T)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
prop: ℙ
, 
pi1: fst(t)
Lemmas referenced : 
istype-base, 
istype-universe, 
equal_wf, 
iff_weakening_equal, 
trivial-equal, 
squash_wf, 
true_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
universeIsType, 
hypothesisEquality, 
sqequalRule, 
productIsType, 
functionIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
equalityIstype, 
applyEquality, 
sqequalBase, 
equalitySymmetry, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
productElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
independent_isectElimination, 
independent_functionElimination, 
promote_hyp, 
rename, 
functionExtensionality, 
inhabitedIsType
Latex:
\mforall{}[T:Type].  (canonicalizable(T)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}t:T.  \mexists{}x:Base.  (t  =  x))
Date html generated:
2019_10_15-AM-10_20_00
Last ObjectModification:
2019_08_29-AM-10_56_34
Theory : call!by!value_2
Home
Index