Nuprl Lemma : int_eq-sqle-lemma2

[x:Top]. (if x=0  then x  else ⊥ ≤ x)


Proof




Definitions occuring in Statement :  bottom: uall: [x:A]. B[x] top: Top int_eq: if a=b  then c  else d natural_number: $n sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  int_eq-sqle-lemma1 top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis axiomSqleEquality

Latex:
\mforall{}[x:Top].  (if  x=0    then  x    else  \mbot{}  \mleq{}  x)



Date html generated: 2016_05_13-PM-03_46_20
Last ObjectModification: 2015_12_26-AM-09_58_29

Theory : call!by!value_2


Home Index