Nuprl Lemma : int_eq-sqle-lemma2
∀[x:Top]. (if x=0  then x  else ⊥ ≤ x)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
int_eq: if a=b  then c  else d
, 
natural_number: $n
, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
int_eq-sqle-lemma1, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
axiomSqleEquality
Latex:
\mforall{}[x:Top].  (if  x=0    then  x    else  \mbot{}  \mleq{}  x)
Date html generated:
2016_05_13-PM-03_46_20
Last ObjectModification:
2015_12_26-AM-09_58_29
Theory : call!by!value_2
Home
Index