Step
*
of Lemma
vdf-wf+
No Annotations
∀[A,B:Type]. ∀[C:A ⟶ B ⟶ Type].
∀n:ℕ
((vdf(A;B;a,b.C[a;b];n) ∈ Type)
∧ (∀f:vdf(A;B;a,b.C[a;b];n). ∀L:(a:A × b:B × C[a;b]) List.
((||L|| ≤ (n + 1))
⇒ ((vdf-eq(A;f;L) ∈ ℙ)
∧ (vdf-eq(A;f;L) ⊆r (∀[i:ℕ||L||]. ((fst(L[i])) = (f firstn(i;L) (fst(snd(L[i])))) ∈ A)))))))
BY
{ InductionOnNat }
1
.....basecase.....
1. A : Type
2. B : Type
3. C : A ⟶ B ⟶ Type
4. n : ℤ
⊢ (vdf(A;B;a,b.C[a;b];0) ∈ Type)
∧ (∀f:vdf(A;B;a,b.C[a;b];0). ∀L:(a:A × b:B × C[a;b]) List.
((||L|| ≤ (0 + 1))
⇒ ((vdf-eq(A;f;L) ∈ ℙ) ∧ (vdf-eq(A;f;L) ⊆r (∀[i:ℕ||L||]. ((fst(L[i])) = (f firstn(i;L) (fst(snd(L[i])))) ∈ A))))))
2
.....upcase.....
1. A : Type
2. B : Type
3. C : A ⟶ B ⟶ Type
4. n : ℤ
5. 0 < n
6. (vdf(A;B;a,b.C[a;b];n - 1) ∈ Type)
∧ (∀f:vdf(A;B;a,b.C[a;b];n - 1). ∀L:(a:A × b:B × C[a;b]) List.
((||L|| ≤ ((n - 1) + 1))
⇒ ((vdf-eq(A;f;L) ∈ ℙ) ∧ (vdf-eq(A;f;L) ⊆r (∀[i:ℕ||L||]. ((fst(L[i])) = (f firstn(i;L) (fst(snd(L[i])))) ∈ A))))))
⊢ (vdf(A;B;a,b.C[a;b];n) ∈ Type)
∧ (∀f:vdf(A;B;a,b.C[a;b];n). ∀L:(a:A × b:B × C[a;b]) List.
((||L|| ≤ (n + 1))
⇒ ((vdf-eq(A;f;L) ∈ ℙ) ∧ (vdf-eq(A;f;L) ⊆r (∀[i:ℕ||L||]. ((fst(L[i])) = (f firstn(i;L) (fst(snd(L[i])))) ∈ A))))))
Latex:
Latex:
No Annotations
\mforall{}[A,B:Type]. \mforall{}[C:A {}\mrightarrow{} B {}\mrightarrow{} Type].
\mforall{}n:\mBbbN{}
((vdf(A;B;a,b.C[a;b];n) \mmember{} Type)
\mwedge{} (\mforall{}f:vdf(A;B;a,b.C[a;b];n). \mforall{}L:(a:A \mtimes{} b:B \mtimes{} C[a;b]) List.
((||L|| \mleq{} (n + 1))
{}\mRightarrow{} ((vdf-eq(A;f;L) \mmember{} \mBbbP{})
\mwedge{} (vdf-eq(A;f;L) \msubseteq{}r (\mforall{}[i:\mBbbN{}||L||]. ((fst(L[i])) = (f firstn(i;L) (fst(snd(L[i])))))))))))
By
Latex:
InductionOnNat
Home
Index