Nuprl Lemma : vdf-wf+
∀[A,B:Type]. ∀[C:A ⟶ B ⟶ Type].
  ∀n:ℕ
    ((vdf(A;B;a,b.C[a;b];n) ∈ Type)
    ∧ (∀f:vdf(A;B;a,b.C[a;b];n). ∀L:(a:A × b:B × C[a;b]) List.
         ((||L|| ≤ (n + 1))
         
⇒ ((vdf-eq(A;f;L) ∈ ℙ)
            ∧ (vdf-eq(A;f;L) ⊆r (∀[i:ℕ||L||]. ((fst(L[i])) = (f firstn(i;L) (fst(snd(L[i])))) ∈ A)))))))
Proof
Definitions occuring in Statement : 
vdf: vdf(A;B;a,b.C[a; b];n)
, 
vdf-eq: vdf-eq(A;f;L)
, 
firstn: firstn(n;as)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
vdf: vdf(A;B;a,b.C[a; b];n)
, 
lt_int: i <z j
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cand: A c∧ B
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
vdf-eq: vdf-eq(A;f;L)
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
dep-all: dep-all(n;i.P[i])
, 
cons: [a / b]
, 
spreadn: spread3, 
firstn: firstn(n;as)
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
bfalse: ff
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
true: True
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
sq_type: SQType(T)
, 
guard: {T}
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
bool: 𝔹
, 
unit: Unit
, 
uiff: uiff(P;Q)
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
int_iseg: {i...j}
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
subtract-1-ge-0, 
istype-nat, 
istype-universe, 
list_wf, 
equal-wf-base, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
istype-le, 
length_wf, 
list-cases, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
true_wf, 
product_subtype_list, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
dep-isect-wf, 
equal_wf, 
nil_wf, 
istype-true, 
le_weakening2, 
non_neg_length, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
int_seg_properties, 
int_seg_wf, 
first0, 
cons_wf, 
subtype_rel_list, 
top_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_seg_subtype_special, 
int_seg_cases, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
subtract-add-cancel, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-top, 
select-firstn, 
firstn-firstn, 
firstn_wf, 
squash_wf, 
length_firstn_eq, 
subtype_rel_self, 
iff_weakening_equal, 
length_firstn, 
select_wf, 
lelt_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
because_Cache, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
functionEquality, 
setEquality, 
productEquality, 
applyEquality, 
intEquality, 
baseClosed, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality_alt, 
equalityIstype, 
sqequalBase, 
productIsType, 
dependentIntersectionElimination, 
cumulativity, 
depIsectIsType, 
addEquality, 
equalityElimination, 
axiomSqEquality, 
imageElimination, 
lessCases, 
imageMemberEquality, 
closedConclusion
Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].
    \mforall{}n:\mBbbN{}
        ((vdf(A;B;a,b.C[a;b];n)  \mmember{}  Type)
        \mwedge{}  (\mforall{}f:vdf(A;B;a,b.C[a;b];n).  \mforall{}L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List.
                  ((||L||  \mleq{}  (n  +  1))
                  {}\mRightarrow{}  ((vdf-eq(A;f;L)  \mmember{}  \mBbbP{})
                        \mwedge{}  (vdf-eq(A;f;L)  \msubseteq{}r  (\mforall{}[i:\mBbbN{}||L||].  ((fst(L[i]))  =  (f  firstn(i;L)  (fst(snd(L[i])))))))))))
Date html generated:
2020_05_19-PM-09_40_11
Last ObjectModification:
2020_03_05-PM-04_39_08
Theory : co-recursion-2
Home
Index