Step * 2 1 of Lemma vdf-wf+


1. Type
2. Type
3. A ⟶ B ⟶ Type
4. : ℤ
5. 0 < n
6. vdf(A;B;a,b.C[a;b];n 1) ∈ Type
7. ∀f:vdf(A;B;a,b.C[a;b];n 1). ∀L:(a:A × b:B × C[a;b]) List.
     ((||L|| ≤ ((n 1) 1))
      ((vdf-eq(A;f;L) ∈ ℙ) ∧ (vdf-eq(A;f;L) ⊆(∀[i:ℕ||L||]. ((fst(L[i])) (f firstn(i;L) (fst(snd(L[i])))) ∈ A)))))
⊢ vdf(A;B;a,b.C[a;b];n) ∈ Type
BY
(Unfold `vdf` THEN (OReduce THENA Auto) THEN DepIsectWf THEN Auto) }


Latex:


Latex:

1.  A  :  Type
2.  B  :  Type
3.  C  :  A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type
4.  n  :  \mBbbZ{}
5.  0  <  n
6.  vdf(A;B;a,b.C[a;b];n  -  1)  \mmember{}  Type
7.  \mforall{}f:vdf(A;B;a,b.C[a;b];n  -  1).  \mforall{}L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List.
          ((||L||  \mleq{}  ((n  -  1)  +  1))
          {}\mRightarrow{}  ((vdf-eq(A;f;L)  \mmember{}  \mBbbP{})
                \mwedge{}  (vdf-eq(A;f;L)  \msubseteq{}r  (\mforall{}[i:\mBbbN{}||L||].  ((fst(L[i]))  =  (f  firstn(i;L)  (fst(snd(L[i])))))))))
\mvdash{}  vdf(A;B;a,b.C[a;b];n)  \mmember{}  Type


By


Latex:
(Unfold  `vdf`  0  THEN  (OReduce  0  THENA  Auto)  THEN  DepIsectWf  THEN  Auto)




Home Index