Step
*
of Lemma
all-accessible-iff-induction
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
(∀t:T. accessible(T;x,y.R[x;y];t)
⇐⇒ ∀[P:T ⟶ ℙ]. ((∀t:T. ((∀x:T. (R[x;t]
⇒ P[x]))
⇒ P[t]))
⇒ (∀t:T. P[t])))
BY
{ (InstLemma `accessible-induction` [] THEN RepeatFor 2 (ParallelLast') THEN Auto) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀[P:T ⟶ ℙ]. ((∀t:T. ((∀x:T. (R[x;t]
⇒ P[x]))
⇒ P[t]))
⇒ (∀t:T. (accessible(T;x,y.R[x;y];t)
⇒ P[t])))
4. ∀[P:T ⟶ ℙ]. ((∀t:T. ((∀x:T. (R[x;t]
⇒ P[x]))
⇒ P[t]))
⇒ (∀t:T. P[t]))@i'
5. t : T@i
⊢ accessible(T;x,y.R[x;y];t)
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
(\mforall{}t:T. accessible(T;x,y.R[x;y];t)
\mLeftarrow{}{}\mRightarrow{} \mforall{}[P:T {}\mrightarrow{} \mBbbP{}]. ((\mforall{}t:T. ((\mforall{}x:T. (R[x;t] {}\mRightarrow{} P[x])) {}\mRightarrow{} P[t])) {}\mRightarrow{} (\mforall{}t:T. P[t])))
By
Latex:
(InstLemma `accessible-induction` [] THEN RepeatFor 2 (ParallelLast') THEN Auto)
Home
Index