Nuprl Lemma : all-accessible-iff-induction

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (∀t:T. accessible(T;x,y.R[x;y];t) ⇐⇒ ∀[P:T ⟶ ℙ]. ((∀t:T. ((∀x:T. (R[x;t]  P[x]))  P[t]))  (∀t:T. P[t])))


Proof




Definitions occuring in Statement :  accessible: accessible(T;x,y.R[x; y];t) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] so_apply: x[s] prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] rev_implies:  Q
Lemmas referenced :  accessible-induction all_wf accessible_wf uall_wf accessible-iff
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation lambdaFormation sqequalRule independent_functionElimination dependent_functionElimination lambdaEquality functionEquality applyEquality cumulativity universeEquality instantiate productElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}t:T.  accessible(T;x,y.R[x;y];t)
    \mLeftarrow{}{}\mRightarrow{}  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}t:T.  ((\mforall{}x:T.  (R[x;t]  {}\mRightarrow{}  P[x]))  {}\mRightarrow{}  P[t]))  {}\mRightarrow{}  (\mforall{}t:T.  P[t])))



Date html generated: 2016_05_14-AM-06_18_50
Last ObjectModification: 2015_12_26-PM-00_02_43

Theory : co-recursion


Home Index