Nuprl Lemma : all-accessible-iff-induction
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (∀t:T. accessible(T;x,y.R[x;y];t) 
⇐⇒ ∀[P:T ⟶ ℙ]. ((∀t:T. ((∀x:T. (R[x;t] 
⇒ P[x])) 
⇒ P[t])) 
⇒ (∀t:T. P[t])))
Proof
Definitions occuring in Statement : 
accessible: accessible(T;x,y.R[x; y];t)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
accessible-induction, 
all_wf, 
accessible_wf, 
uall_wf, 
accessible-iff
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
lambdaFormation, 
sqequalRule, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaEquality, 
functionEquality, 
applyEquality, 
cumulativity, 
universeEquality, 
instantiate, 
productElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}t:T.  accessible(T;x,y.R[x;y];t)
    \mLeftarrow{}{}\mRightarrow{}  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}t:T.  ((\mforall{}x:T.  (R[x;t]  {}\mRightarrow{}  P[x]))  {}\mRightarrow{}  P[t]))  {}\mRightarrow{}  (\mforall{}t:T.  P[t])))
Date html generated:
2016_05_14-AM-06_18_50
Last ObjectModification:
2015_12_26-PM-00_02_43
Theory : co-recursion
Home
Index