Nuprl Lemma : accessible-iff

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[t:T].  (accessible(T;x,y.R[x;y];t) ⇐⇒ ∀u:T. (R[u;t]  accessible(T;x,y.R[x;y];u)))


Proof




Definitions occuring in Statement :  accessible: accessible(T;x,y.R[x; y];t) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q accessible: accessible(T;x,y.R[x; y];t) member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ext-family: F ≡ G all: x:A. B[x] ext-eq: A ≡ B pi1: fst(t) pi2: snd(t) guard: {T} uimplies: supposing a
Lemmas referenced :  accessible_wf all_wf param-W-ext unit_wf2 pi1_wf it_wf param-W_wf ext-eq_inversion subtype_rel_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation sqequalHypSubstitution sqequalRule cut lemma_by_obid isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality hypothesis_subsumption productEquality because_Cache dependent_functionElimination productElimination rename introduction dependent_pairEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[t:T].
    (accessible(T;x,y.R[x;y];t)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}u:T.  (R[u;t]  {}\mRightarrow{}  accessible(T;x,y.R[x;y];u)))



Date html generated: 2016_05_14-AM-06_18_41
Last ObjectModification: 2015_12_26-PM-00_03_03

Theory : co-recursion


Home Index