Nuprl Lemma : accessible-iff
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[t:T].  (accessible(T;x,y.R[x;y];t) 
⇐⇒ ∀u:T. (R[u;t] 
⇒ accessible(T;x,y.R[x;y];u)))
Proof
Definitions occuring in Statement : 
accessible: accessible(T;x,y.R[x; y];t)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
accessible: accessible(T;x,y.R[x; y];t)
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
ext-family: F ≡ G
, 
all: ∀x:A. B[x]
, 
ext-eq: A ≡ B
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
accessible_wf, 
all_wf, 
param-W-ext, 
unit_wf2, 
pi1_wf, 
it_wf, 
param-W_wf, 
ext-eq_inversion, 
subtype_rel_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
hypothesis_subsumption, 
productEquality, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
rename, 
introduction, 
dependent_pairEquality, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[t:T].
    (accessible(T;x,y.R[x;y];t)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}u:T.  (R[u;t]  {}\mRightarrow{}  accessible(T;x,y.R[x;y];u)))
Date html generated:
2016_05_14-AM-06_18_41
Last ObjectModification:
2015_12_26-PM-00_03_03
Theory : co-recursion
Home
Index