Nuprl Lemma : accessible_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[t:T].  (accessible(T;x,y.R[x;y];t) ∈ ℙ)


Proof




Definitions occuring in Statement :  accessible: accessible(T;x,y.R[x; y];t) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T accessible: accessible(T;x,y.R[x; y];t) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B prop: so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  param-W_wf unit_wf2 pi1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis productEquality universeEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[t:T].    (accessible(T;x,y.R[x;y];t)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_18_38
Last ObjectModification: 2015_12_26-PM-00_02_55

Theory : co-recursion


Home Index