Nuprl Lemma : accessible-induction
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].
  ((∀t:T. ((∀x:T. (R[x;t] 
⇒ P[x])) 
⇒ P[t])) 
⇒ (∀t:T. (accessible(T;x,y.R[x;y];t) 
⇒ P[t])))
Proof
Definitions occuring in Statement : 
accessible: accessible(T;x,y.R[x; y];t)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
accessible: accessible(T;x,y.R[x; y];t)
, 
pi1: fst(t)
Lemmas referenced : 
param-W-induction, 
unit_wf2, 
pi1_wf, 
param-W_wf, 
all_wf, 
accessible_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
productEquality, 
applyEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
cumulativity, 
productElimination, 
rename, 
dependent_pairEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}t:T.  ((\mforall{}x:T.  (R[x;t]  {}\mRightarrow{}  P[x]))  {}\mRightarrow{}  P[t]))  {}\mRightarrow{}  (\mforall{}t:T.  (accessible(T;x,y.R[x;y];t)  {}\mRightarrow{}  P[t])))
Date html generated:
2016_05_14-AM-06_18_47
Last ObjectModification:
2015_12_26-PM-00_02_57
Theory : co-recursion
Home
Index