Nuprl Lemma : copath-hd-cons

[b:Top]. ∀[p:Top × Top].  (copath-hd(copath-cons(b;p)) b)


Proof




Definitions occuring in Statement :  copath-cons: copath-cons(b;x) copath-hd: copath-hd(p) uall: [x:A]. B[x] top: Top product: x:A × B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T copath-cons: copath-cons(b;x) copath-hd: copath-hd(p) pi2: snd(t) pi1: fst(t)
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut productElimination thin sqequalRule hypothesis sqequalAxiom productEquality extract_by_obid sqequalHypSubstitution isect_memberEquality isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[b:Top].  \mforall{}[p:Top  \mtimes{}  Top].    (copath-hd(copath-cons(b;p))  \msim{}  b)



Date html generated: 2018_07_25-PM-01_40_01
Last ObjectModification: 2018_06_04-PM-06_55_47

Theory : co-recursion


Home Index