Nuprl Lemma : copath-tl-cons

[b:Top]. ∀[p:ℕ × Top].  (copath-tl(copath-cons(b;p)) p)


Proof




Definitions occuring in Statement :  copath-cons: copath-cons(b;x) copath-tl: copath-tl(x) nat: uall: [x:A]. B[x] top: Top product: x:A × B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T copath-cons: copath-cons(b;x) copath-tl: copath-tl(x) pi2: snd(t) nat:
Lemmas referenced :  add-subtract-cancel nat_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut productElimination thin sqequalRule extract_by_obid sqequalHypSubstitution isectElimination setElimination rename hypothesisEquality hypothesis natural_numberEquality sqequalAxiom productEquality isect_memberEquality because_Cache

Latex:
\mforall{}[b:Top].  \mforall{}[p:\mBbbN{}  \mtimes{}  Top].    (copath-tl(copath-cons(b;p))  \msim{}  p)



Date html generated: 2018_07_25-PM-01_40_04
Last ObjectModification: 2018_06_04-PM-06_56_49

Theory : co-recursion


Home Index