Nuprl Lemma : copath-tl-cons
∀[b:Top]. ∀[p:ℕ × Top].  (copath-tl(copath-cons(b;p)) ~ p)
Proof
Definitions occuring in Statement : 
copath-cons: copath-cons(b;x)
, 
copath-tl: copath-tl(x)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
product: x:A × B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
copath-cons: copath-cons(b;x)
, 
copath-tl: copath-tl(x)
, 
pi2: snd(t)
, 
nat: ℕ
Lemmas referenced : 
add-subtract-cancel, 
nat_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
productElimination, 
thin, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
sqequalAxiom, 
productEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[b:Top].  \mforall{}[p:\mBbbN{}  \mtimes{}  Top].    (copath-tl(copath-cons(b;p))  \msim{}  p)
Date html generated:
2018_07_25-PM-01_40_04
Last ObjectModification:
2018_06_04-PM-06_56_49
Theory : co-recursion
Home
Index