Step
*
of Lemma
corec-rel-wf2
∀[F:𝕌' ⟶ 𝕌']
∀[G:⋂T:𝕌'. ((T ⟶ T ⟶ ℙ) ⟶ F[T] ⟶ F[T] ⟶ ℙ)]. (corec-rel(G) ∈ corec(T.F[T]) ⟶ corec(T.F[T]) ⟶ ℙ)
supposing continuous-monotone{i':l}(T.F[T])
BY
{ ((UnivCD THENA Auto)
THEN (Assert ∀n:ℕ. (G^n (λx,y. True) ∈ primrec(n;Top;λ,T. F[T]) ⟶ primrec(n;Top;λ,T. F[T]) ⟶ ℙ) BY
(InductionOnNat
THEN (RWO "fun_exp_unroll" 0 THENA Auto)
THEN (RWO "primrec-unroll" 0 THENA Auto)
THEN Reduce 0
THEN Try ((((Subst' (n =z 0) ~ ff 0 THENA Complete (Auto))
THEN (Subst' n <z 1 ~ ff 0 THENA Complete (Auto))
)
THEN Reduce 0
THEN Auto))
THEN Auto))
) }
1
1. F : 𝕌' ⟶ 𝕌'
2. continuous-monotone{i':l}(T.F[T])
3. G : ⋂T:𝕌'. ((T ⟶ T ⟶ ℙ) ⟶ F[T] ⟶ F[T] ⟶ ℙ)
4. ∀n:ℕ. (G^n (λx,y. True) ∈ primrec(n;Top;λ,T. F[T]) ⟶ primrec(n;Top;λ,T. F[T]) ⟶ ℙ)
⊢ corec-rel(G) ∈ corec(T.F[T]) ⟶ corec(T.F[T]) ⟶ ℙ
Latex:
Latex:
\mforall{}[F:\mBbbU{}' {}\mrightarrow{} \mBbbU{}']
\mforall{}[G:\mcap{}T:\mBbbU{}'. ((T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}) {}\mrightarrow{} F[T] {}\mrightarrow{} F[T] {}\mrightarrow{} \mBbbP{})]
(corec-rel(G) \mmember{} corec(T.F[T]) {}\mrightarrow{} corec(T.F[T]) {}\mrightarrow{} \mBbbP{})
supposing continuous-monotone\{i':l\}(T.F[T])
By
Latex:
((UnivCD THENA Auto)
THEN (Assert \mforall{}n:\mBbbN{}. (G\^{}n (\mlambda{}x,y. True) \mmember{} primrec(n;Top;\mlambda{},T. F[T]) {}\mrightarrow{} primrec(n;Top;\mlambda{},T. F[T]) {}\mrightarrow{} \mBbbP{}) B\000CY
(InductionOnNat
THEN (RWO "fun\_exp\_unroll" 0 THENA Auto)
THEN (RWO "primrec-unroll" 0 THENA Auto)
THEN Reduce 0
THEN Try ((((Subst' (n =\msubz{} 0) \msim{} ff 0 THENA Complete (Auto))
THEN (Subst' n <z 1 \msim{} ff 0 THENA Complete (Auto))
)
THEN Reduce 0
THEN Auto))
THEN Auto))
)
Home
Index