Nuprl Lemma : corec-rel-wf2

[F:𝕌' ⟶ 𝕌']
  ∀[G:⋂T:𝕌'. ((T ⟶ T ⟶ ℙ) ⟶ F[T] ⟶ F[T] ⟶ ℙ)]. (corec-rel(G) ∈ corec(T.F[T]) ⟶ corec(T.F[T]) ⟶ ℙ
  supposing continuous-monotone{i':l}(T.F[T])


Proof




Definitions occuring in Statement :  corec-rel: corec-rel(G) corec: corec(T.F[T]) continuous-monotone: ContinuousMonotone(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} prop: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A top: Top lt_int: i <j subtract: m eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt squash: T nequal: a ≠ b ∈  subtype_rel: A ⊆B true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) assert: b bfalse: ff uiff: uiff(P;Q) compose: g so_apply: x[s] decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] corec-rel: corec-rel(G) istype: istype(T) corec: corec(T.F[T])
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf fun_exp_unroll istype-void le_wf primrec-unroll true_wf istype-top subtract-1-ge-0 le_weakening2 subtype_base_sq bool_subtype_base equal_wf eq_int_eq_false le_weakening int_subtype_base subtype_rel_self iff_weakening_equal iff_imp_equal_bool lt_int_wf iff_functionality_wrt_iff assert_wf iff_weakening_uiff assert_of_lt_int less-iff-le add_functionality_wrt_le add-associates add-zero add-commutes le-add-cancel2 primrec_wf subtract_wf decidable__le istype-false not-le-2 condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-swap le-add-cancel top_wf int_seg_wf nat_wf continuous-monotone_wf corec_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  sqequalRule Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :isect_memberEquality_alt,  because_Cache Error :inhabitedIsType,  instantiate applyEquality imageElimination universeEquality Error :equalityIsType4,  baseClosed imageMemberEquality productElimination addEquality unionElimination minusEquality cumulativity functionExtensionality Error :isectIsType,  Error :functionIsType

Latex:
\mforall{}[F:\mBbbU{}'  {}\mrightarrow{}  \mBbbU{}']
    \mforall{}[G:\mcap{}T:\mBbbU{}'.  ((T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  \mBbbP{})]
        (corec-rel(G)  \mmember{}  corec(T.F[T])  {}\mrightarrow{}  corec(T.F[T])  {}\mrightarrow{}  \mBbbP{}) 
    supposing  continuous-monotone\{i':l\}(T.F[T])



Date html generated: 2019_06_20-PM-00_37_25
Last ObjectModification: 2018_10_01-AM-10_08_50

Theory : co-recursion


Home Index