Nuprl Lemma : corec-rel-wf2
∀[F:𝕌' ⟶ 𝕌']
  ∀[G:⋂T:𝕌'. ((T ⟶ T ⟶ ℙ) ⟶ F[T] ⟶ F[T] ⟶ ℙ)]. (corec-rel(G) ∈ corec(T.F[T]) ⟶ corec(T.F[T]) ⟶ ℙ) 
  supposing continuous-monotone{i':l}(T.F[T])
Proof
Definitions occuring in Statement : 
corec-rel: corec-rel(G)
, 
corec: corec(T.F[T])
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
top: Top
, 
lt_int: i <z j
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
subtype_rel: A ⊆r B
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
compose: f o g
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
corec-rel: corec-rel(G)
, 
istype: istype(T)
, 
corec: corec(T.F[T])
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
fun_exp_unroll, 
istype-void, 
le_wf, 
primrec-unroll, 
true_wf, 
istype-top, 
subtract-1-ge-0, 
le_weakening2, 
subtype_base_sq, 
bool_subtype_base, 
equal_wf, 
eq_int_eq_false, 
le_weakening, 
int_subtype_base, 
subtype_rel_self, 
iff_weakening_equal, 
iff_imp_equal_bool, 
lt_int_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
iff_weakening_uiff, 
assert_of_lt_int, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
add-commutes, 
le-add-cancel2, 
primrec_wf, 
subtract_wf, 
decidable__le, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-swap, 
le-add-cancel, 
top_wf, 
int_seg_wf, 
nat_wf, 
continuous-monotone_wf, 
corec_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
sqequalRule, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
Error :isect_memberEquality_alt, 
because_Cache, 
Error :inhabitedIsType, 
instantiate, 
applyEquality, 
imageElimination, 
universeEquality, 
Error :equalityIsType4, 
baseClosed, 
imageMemberEquality, 
productElimination, 
addEquality, 
unionElimination, 
minusEquality, 
cumulativity, 
functionExtensionality, 
Error :isectIsType, 
Error :functionIsType
Latex:
\mforall{}[F:\mBbbU{}'  {}\mrightarrow{}  \mBbbU{}']
    \mforall{}[G:\mcap{}T:\mBbbU{}'.  ((T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  \mBbbP{})]
        (corec-rel(G)  \mmember{}  corec(T.F[T])  {}\mrightarrow{}  corec(T.F[T])  {}\mrightarrow{}  \mBbbP{}) 
    supposing  continuous-monotone\{i':l\}(T.F[T])
Date html generated:
2019_06_20-PM-00_37_25
Last ObjectModification:
2018_10_01-AM-10_08_50
Theory : co-recursion
Home
Index