Nuprl Lemma : isom-win2

g1,g2:SimpleGame.  (g1 ≅ g2  {win2(g1) ⇐⇒ win2(g2)})


Proof




Definitions occuring in Statement :  isom-games: g1 ≅ g2 win2: win2(g) simple-game: SimpleGame guard: {T} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  rev_implies:  Q prop: and: P ∧ Q iff: ⇐⇒ Q guard: {T} member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  simple-game_wf isom-games_wf win2_wf isom-preserves-win2 isom-games_inversion
Rules used in proof :  because_Cache dependent_functionElimination independent_pairFormation hypothesis independent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g1,g2:SimpleGame.    (g1  \mcong{}  g2  {}\mRightarrow{}  \{win2(g1)  \mLeftarrow{}{}\mRightarrow{}  win2(g2)\})



Date html generated: 2018_07_25-PM-01_34_40
Last ObjectModification: 2018_07_11-PM-00_26_19

Theory : co-recursion


Home Index