Nuprl Lemma : isom-win2
∀g1,g2:SimpleGame.  (g1 ≅ g2 
⇒ {win2(g1) 
⇐⇒ win2(g2)})
Proof
Definitions occuring in Statement : 
isom-games: g1 ≅ g2
, 
win2: win2(g)
, 
simple-game: SimpleGame
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
simple-game_wf, 
isom-games_wf, 
win2_wf, 
isom-preserves-win2, 
isom-games_inversion
Rules used in proof : 
because_Cache, 
dependent_functionElimination, 
independent_pairFormation, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g1,g2:SimpleGame.    (g1  \mcong{}  g2  {}\mRightarrow{}  \{win2(g1)  \mLeftarrow{}{}\mRightarrow{}  win2(g2)\})
Date html generated:
2018_07_25-PM-01_34_40
Last ObjectModification:
2018_07_11-PM-00_26_19
Theory : co-recursion
Home
Index