Nuprl Lemma : not-not-sig-to-W

A:Type. ∀B:A ⟶ Type.  ((∀R:Type. (((a:A × (B[a]  R))  R)  R))  W(A;a.B[a]))


Proof




Definitions occuring in Statement :  W: W(A;a.B[a]) so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] so_lambda: λ2x.t[x] ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  istype-universe W_wf W-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalRule Error :functionIsType,  Error :inhabitedIsType,  hypothesisEquality Error :productIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis Error :universeIsType,  applyEquality universeEquality dependent_functionElimination Error :lambdaEquality_alt,  independent_functionElimination because_Cache rename productElimination

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    ((\mforall{}R:Type.  (((a:A  \mtimes{}  (B[a]  {}\mRightarrow{}  R))  {}\mRightarrow{}  R)  {}\mRightarrow{}  R))  {}\mRightarrow{}  W(A;a.B[a]))



Date html generated: 2019_06_20-PM-00_36_41
Last ObjectModification: 2018_10_06-AM-11_20_24

Theory : co-recursion


Home Index