Nuprl Lemma : pcw-final-step_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].
[s:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])].
  (pcw-final-step(s) ∈ ℙ)


Proof




Definitions occuring in Statement :  pcw-final-step: pcw-final-step(s) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcw-final-step: pcw-final-step(s) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 isr: isr(x) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  assert_wf bfalse_wf btrue_wf pcw-step_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution productElimination thin extract_by_obid isectElimination unionElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  hypothesisEquality Error :lambdaEquality_alt,  applyEquality because_Cache Error :isect_memberEquality_alt,  Error :functionIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[s:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])].
    (pcw-final-step(s)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_35_33
Last ObjectModification: 2018_10_06-AM-11_20_36

Theory : co-recursion


Home Index