Nuprl Lemma : sg-pos-change-init

[g:SimpleGame]. ∀[j:Top].  (Pos(g@j) {p:Pos(g)| sg-reachable(g;j;p)} )


Proof




Definitions occuring in Statement :  sg-change-init: g@j sg-reachable: sg-reachable(g;x;y) sg-pos: Pos(g) simple-game: SimpleGame uall: [x:A]. B[x] top: Top set: {x:A| B[x]}  sqequal: t
Definitions unfolded in proof :  pi1: fst(t) spreadn: spread4 sg-change-init: g@j sg-pos: Pos(g) simple-game: SimpleGame member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  simple-game_wf top_wf
Rules used in proof :  because_Cache hypothesisEquality isectElimination isect_memberEquality extract_by_obid sqequalAxiom hypothesis sqequalRule thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[j:Top].    (Pos(g@j)  \msim{}  \{p:Pos(g)|  sg-reachable(g;j;p)\}  )



Date html generated: 2018_07_25-PM-01_35_11
Last ObjectModification: 2018_06_20-PM-03_47_50

Theory : co-recursion


Home Index