Nuprl Lemma : lifting-add-isaxiom-2

[a:ℤ]. ∀[b,c,d:Top].  (a if Ax then otherwise if Ax then otherwise d)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top isaxiom: if Ax then otherwise b add: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  add-commutes lifting-add-isaxiom-1 top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache isect_memberEquality voidElimination voidEquality sqequalAxiom intEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b,c,d:Top].    (a  +  if  b  =  Ax  then  c  otherwise  d  \msim{}  if  b  =  Ax  then  a  +  c  otherwise  a  +  d)



Date html generated: 2016_05_13-PM-03_43_17
Last ObjectModification: 2015_12_26-AM-09_52_30

Theory : computation


Home Index