Nuprl Lemma : normalization-spread
∀[p,F:Top]. (let a,b = p in F[p] ~ let a,b = p in F[<a, b>])
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
spread: spread def,
pair: <a, b>
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
top: Top
,
so_apply: x[s1;s2]
,
so_apply: x[s]
Lemmas referenced :
normalization-spread3,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
sqequalAxiom,
because_Cache
Latex:
\mforall{}[p,F:Top]. (let a,b = p in F[p] \msim{} let a,b = p in F[<a, b>])
Date html generated:
2016_05_13-PM-03_43_28
Last ObjectModification:
2015_12_26-AM-09_52_14
Theory : computation
Home
Index