Nuprl Lemma : normalization-spread
∀[p,F:Top].  (let a,b = p in F[p] ~ let a,b = p in F[<a, b>])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
spread: spread def, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
Lemmas referenced : 
normalization-spread3, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[p,F:Top].    (let  a,b  =  p  in  F[p]  \msim{}  let  a,b  =  p  in  F[<a,  b>])
Date html generated:
2016_05_13-PM-03_43_28
Last ObjectModification:
2015_12_26-AM-09_52_14
Theory : computation
Home
Index