Nuprl Lemma : strict4-ispair
strict4(λx,y,z,w. if x is a pair then y otherwise z)
Proof
Definitions occuring in Statement : 
strict4: strict4(F)
, 
ispair: if z is a pair then a otherwise b
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
Lemmas referenced : 
is-exception_wf, 
base_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
callbyvalueIspair, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
thin, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
introduction, 
ispairExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation
Latex:
strict4(\mlambda{}x,y,z,w.  if  x  is  a  pair  then  y  otherwise  z)
Date html generated:
2016_05_13-PM-03_44_51
Last ObjectModification:
2016_01_14-PM-07_06_20
Theory : computation
Home
Index