Nuprl Lemma : strict4-ispair

strict4(λx,y,z,w. if is pair then otherwise z)


Proof




Definitions occuring in Statement :  strict4: strict4(F) ispair: if is pair then otherwise b lambda: λx.A[x]
Definitions unfolded in proof :  strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ member: t ∈ T uall: [x:A]. B[x] prop: guard: {T} or: P ∨ Q squash: T
Lemmas referenced :  is-exception_wf base_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaFormation sqequalRule cut callbyvalueIspair sqequalHypSubstitution hypothesis lemma_by_obid isectElimination thin baseApply closedConclusion baseClosed hypothesisEquality introduction ispairExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation

Latex:
strict4(\mlambda{}x,y,z,w.  if  x  is  a  pair  then  y  otherwise  z)



Date html generated: 2016_05_13-PM-03_44_51
Last ObjectModification: 2016_01_14-PM-07_06_20

Theory : computation


Home Index