Step
*
1
1
1
2
1
2
1
of Lemma
cantor-to-general-cantor
1. B : ℕ ⟶ ℕ+
2. C : ℕ ⟶ ℕ+
3. ∀n:ℕ. ((B n) ≤ 2^(C n))
4. g : ℕ ⟶ ℕ
5. (g 0) = 0 ∈ ℤ
6. ∀i:ℕ. ((g (i + 1)) = ((g i) + (C i)) ∈ ℤ)
7. ∀n,m:ℕ. (n < m
⇒ g n < g m)
8. ∀k:ℕ. ∃n:ℕ. (k ∈ {g n..g (n + 1)-})
9. h : k:ℕ ⟶ ℕ
10. ∀k:ℕ. (k ∈ {g (h k)..g ((h k) + 1)-})
11. ∀n:ℕ. ∃f:({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;f)
12. F : n:ℕ ⟶ ({g n..g (n + 1)-} ⟶ 𝔹) ⟶ ℕB n
13. ∀n:ℕ. Surj({g n..g (n + 1)-} ⟶ 𝔹;ℕB n;F n)
14. k : ℕ
15. p : ℕ ⟶ 𝔹
16. q : ℕ ⟶ 𝔹
17. p = q ∈ (ℕg k ⟶ 𝔹)
18. n : ℕk
19. p = q ∈ (ℕg k ⟶ 𝔹)
⊢ (g (n + 1)) ≤ (g k)
BY
{ (Decide ⌜n + 1 < k⌝⋅ THEN Auto THEN Subst' n + 1 ~ k 0 THEN Auto) }
Latex:
Latex:
1. B : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
2. C : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
3. \mforall{}n:\mBbbN{}. ((B n) \mleq{} 2\^{}(C n))
4. g : \mBbbN{} {}\mrightarrow{} \mBbbN{}
5. (g 0) = 0
6. \mforall{}i:\mBbbN{}. ((g (i + 1)) = ((g i) + (C i)))
7. \mforall{}n,m:\mBbbN{}. (n < m {}\mRightarrow{} g n < g m)
8. \mforall{}k:\mBbbN{}. \mexists{}n:\mBbbN{}. (k \mmember{} \{g n..g (n + 1)\msupminus{}\})
9. h : k:\mBbbN{} {}\mrightarrow{} \mBbbN{}
10. \mforall{}k:\mBbbN{}. (k \mmember{} \{g (h k)..g ((h k) + 1)\msupminus{}\})
11. \mforall{}n:\mBbbN{}. \mexists{}f:(\{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}B n. Surj(\{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{};\mBbbN{}B n;f)
12. F : n:\mBbbN{} {}\mrightarrow{} (\{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}B n
13. \mforall{}n:\mBbbN{}. Surj(\{g n..g (n + 1)\msupminus{}\} {}\mrightarrow{} \mBbbB{};\mBbbN{}B n;F n)
14. k : \mBbbN{}
15. p : \mBbbN{} {}\mrightarrow{} \mBbbB{}
16. q : \mBbbN{} {}\mrightarrow{} \mBbbB{}
17. p = q
18. n : \mBbbN{}k
19. p = q
\mvdash{} (g (n + 1)) \mleq{} (g k)
By
Latex:
(Decide \mkleeneopen{}n + 1 < k\mkleeneclose{}\mcdot{} THEN Auto THEN Subst' n + 1 \msim{} k 0 THEN Auto)
Home
Index