Nuprl Lemma : contra-dcc_wf

[T:Type]. (dCCC(T) ∈ ℙ)


Proof




Definitions occuring in Statement :  contra-dcc: dCCC(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  exists: x:A. B[x] implies:  Q all: x:A. B[x] prop: contra-dcc: dCCC(T) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe assert_wf bool_wf nat_wf
Rules used in proof :  universeEquality instantiate equalitySymmetry equalityTransitivity axiomEquality applyEquality thin isectElimination sqequalHypSubstitution productEquality hypothesisEquality hypothesis extract_by_obid functionEquality sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  (dCCC(T)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-03_00_19
Last ObjectModification: 2019_06_12-PM-08_02_19

Theory : continuity


Home Index