Nuprl Lemma : contra-dcc_wf
∀[T:Type]. (dCCC(T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
contra-dcc: dCCC(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
contra-dcc: dCCC(T)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
assert_wf, 
bool_wf, 
nat_wf
Rules used in proof : 
universeEquality, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
productEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  (dCCC(T)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-03_00_19
Last ObjectModification:
2019_06_12-PM-08_02_19
Theory : continuity
Home
Index