Step
*
1
2
1
1
1
1
of Lemma
gamma-neighbourhood-prop3
1. beta : ℕ ⟶ ℕ
2. n : ℕ
3. m : ℕ
4. ¬↑init-seg-nat-seq(0s^(m);0s^(n))
5. (beta 0) = 0 ∈ ℤ
6. x1 : ℕ
7. ((fst(0s^(n)**λi.x1^(1))) ≤ (fst(0s^(m))))
∧ ((snd(0s^(n)**λi.x1^(1))) = (snd(0s^(m))) ∈ (ℕfst(0s^(n)**λi.x1^(1)) ⟶ ℕ))
8. x5 : ¬((beta x1) = 0 ∈ ℤ)
9. x6 : ∀y:ℕx1. ((beta y) = 0 ∈ ℤ)
⊢ x1 = 0 ∈ ℤ
BY
{ (RepUR ``append-finite-nat-seq mk-finite-nat-seq zero-seq`` (-3) THEN RepD) }
1
1. beta : ℕ ⟶ ℕ
2. n : ℕ
3. m : ℕ
4. ¬↑init-seg-nat-seq(0s^(m);0s^(n))
5. (beta 0) = 0 ∈ ℤ
6. x1 : ℕ
7. (n + 1) ≤ m
8. (λx.if (x) < (n) then 0 else x1) = (λx.0) ∈ (ℕn + 1 ⟶ ℕ)
9. x5 : ¬((beta x1) = 0 ∈ ℤ)
10. x6 : ∀y:ℕx1. ((beta y) = 0 ∈ ℤ)
⊢ x1 = 0 ∈ ℤ
Latex:
Latex:
1. beta : \mBbbN{} {}\mrightarrow{} \mBbbN{}
2. n : \mBbbN{}
3. m : \mBbbN{}
4. \mneg{}\muparrow{}init-seg-nat-seq(0s\^{}(m);0s\^{}(n))
5. (beta 0) = 0
6. x1 : \mBbbN{}
7. ((fst(0s\^{}(n)**\mlambda{}i.x1\^{}(1))) \mleq{} (fst(0s\^{}(m)))) \mwedge{} ((snd(0s\^{}(n)**\mlambda{}i.x1\^{}(1))) = (snd(0s\^{}(m))))
8. x5 : \mneg{}((beta x1) = 0)
9. x6 : \mforall{}y:\mBbbN{}x1. ((beta y) = 0)
\mvdash{} x1 = 0
By
Latex:
(RepUR ``append-finite-nat-seq mk-finite-nat-seq zero-seq`` (-3) THEN RepD)
Home
Index