Nuprl Lemma : gamma-neighbourhood-prop3

beta:ℕ ⟶ ℕ. ∀n,m:ℕ.
  (((beta 0) 0 ∈ ℤ)
   (↑isl(gamma-neighbourhood(beta;0s^(n)) 0s^(m)))
   (n < m ∧ ((gamma-neighbourhood(beta;0s^(n)) 0s^(m)) (inl 0) ∈ (ℕ?))))


Proof




Definitions occuring in Statement :  gamma-neighbourhood: gamma-neighbourhood(beta;n0) mk-finite-nat-seq: f^(n) zero-seq: 0s nat: assert: b isl: isl(x) less_than: a < b all: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A isl: isl(x) decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] gamma-neighbourhood: gamma-neighbourhood(beta;n0) exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  assert: b bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ge: i ≥  iff: ⇐⇒ Q zero-seq: 0s mk-finite-nat-seq: f^(n) append-finite-nat-seq: f**g pi1: fst(t) pi2: snd(t) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b true: True squash: T cand: c∧ B rev_implies:  Q finite-nat-seq: finite-nat-seq()
Lemmas referenced :  istype-assert gamma-neighbourhood_wf mk-finite-nat-seq_wf zero-seq_wf subtype_rel_function nat_wf int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self btrue_wf bfalse_wf istype-int decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le set_subtype_base le_wf int_subtype_base istype-nat init-seg-nat-seq_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot extend-seq1-all-dec finite-nat-seq_wf decidable_wf assert_wf append-finite-nat-seq_wf not_wf equal-wf-base true_wf nat_properties intformand_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma assert-init-seg-nat-seq2 decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma istype-less_than istype-top less_than_anti-reflexive less_than_wf decidable__equal_int unit_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis because_Cache natural_numberEquality setElimination rename independent_isectElimination sqequalRule independent_pairFormation Error :inhabitedIsType,  unionElimination Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination Error :dependent_set_memberEquality_alt,  approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  intEquality baseClosed sqequalBase Error :functionIsType,  equalityElimination productElimination promote_hyp instantiate cumulativity functionEquality productEquality int_eqEquality hyp_replacement applyLambdaEquality addEquality Error :productIsType,  baseApply closedConclusion lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isectIsTypeImplies,  imageMemberEquality imageElimination Error :inlEquality_alt,  Error :functionExtensionality_alt

Latex:
\mforall{}beta:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n,m:\mBbbN{}.
    (((beta  0)  =  0)
    {}\mRightarrow{}  (\muparrow{}isl(gamma-neighbourhood(beta;0s\^{}(n))  0s\^{}(m)))
    {}\mRightarrow{}  (n  <  m  \mwedge{}  ((gamma-neighbourhood(beta;0s\^{}(n))  0s\^{}(m))  =  (inl  0))))



Date html generated: 2019_06_20-PM-03_04_12
Last ObjectModification: 2018_12_06-PM-11_34_57

Theory : continuity


Home Index