Step
*
of Lemma
gen-continuity-is-false
¬(∀P:(ℕ ⟶ ℕ) ⟶ ℙ. ∀f:ℕ ⟶ ℕ. ((P f)
⇒ ⇃(∃k:ℕ. ∀g:ℕ ⟶ ℕ. ((f = g ∈ (ℕk ⟶ ℕ))
⇒ (P g)))))
BY
{ ((D 0 THENA Auto)
THEN (InstHyp [⌜λf.∀n:ℕ. ∃m:{n...}. ((f m) = 0 ∈ ℤ)⌝;⌜0s⌝] 1⋅
THENA (Auto THEN Reduce 0 THEN Auto THEN D 0 With ⌜n⌝ THEN Auto)
)
) }
1
1. ∀P:(ℕ ⟶ ℕ) ⟶ ℙ. ∀f:ℕ ⟶ ℕ. ((P f)
⇒ ⇃(∃k:ℕ. ∀g:ℕ ⟶ ℕ. ((f = g ∈ (ℕk ⟶ ℕ))
⇒ (P g))))
2. ⇃(∃k:ℕ. ∀g:ℕ ⟶ ℕ. ((0s = g ∈ (ℕk ⟶ ℕ))
⇒ ((λf.∀n:ℕ. ∃m:{n...}. ((f m) = 0 ∈ ℤ)) g)))
⊢ False
Latex:
Latex:
\mneg{}(\mforall{}P:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. ((P f) {}\mRightarrow{} \00D9(\mexists{}k:\mBbbN{}. \mforall{}g:\mBbbN{} {}\mrightarrow{} \mBbbN{}. ((f = g) {}\mRightarrow{} (P g)))))
By
Latex:
((D 0 THENA Auto)
THEN (InstHyp [\mkleeneopen{}\mlambda{}f.\mforall{}n:\mBbbN{}. \mexists{}m:\{n...\}. ((f m) = 0)\mkleeneclose{};\mkleeneopen{}0s\mkleeneclose{}] 1\mcdot{}
THENA (Auto THEN Reduce 0 THEN Auto THEN D 0 With \mkleeneopen{}n\mkleeneclose{} THEN Auto)
)
)
Home
Index