Nuprl Lemma : gen-continuity-is-false

¬(∀P:(ℕ ⟶ ℕ) ⟶ ℙ. ∀f:ℕ ⟶ ℕ.  ((P f)  ⇃(∃k:ℕ. ∀g:ℕ ⟶ ℕ((f g ∈ (ℕk ⟶ ℕ))  (P g)))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  not: ¬A implies:  Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B so_apply: x[s] exists: x:A. B[x] int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: zero-seq: 0s le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b int_seg: {i..j-} lelt: i ≤ j < k true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  all_wf nat_wf exists_wf int_upper_wf equal-wf-T-base int_upper_subtype_nat zero-seq_wf nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf le_wf quotient_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self true_wf equiv_rel_true squash-from-quotient equal-wf-base-T lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf int_seg_properties decidable__equal_int intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_upper_properties int_subtype_base bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin lambdaEquality introduction extract_by_obid isectElimination sqequalRule setElimination rename hypothesisEquality intEquality applyEquality functionExtensionality baseClosed because_Cache functionEquality independent_functionElimination dependent_pairFormation dependent_set_memberEquality unionElimination natural_numberEquality independent_isectElimination approximateComputation int_eqEquality isect_memberEquality voidElimination voidEquality instantiate cumulativity universeEquality independent_pairFormation imageElimination productElimination equalityElimination equalityTransitivity equalitySymmetry promote_hyp impliesFunctionality

Latex:
\mneg{}(\mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((P  f)  {}\mRightarrow{}  \00D9(\mexists{}k:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((f  =  g)  {}\mRightarrow{}  (P  g)))))



Date html generated: 2017_09_29-PM-06_10_10
Last ObjectModification: 2017_07_11-PM-05_33_38

Theory : continuity


Home Index