Step * 1 2 1 of Lemma general-cantor-to-int-uniform-continuity

.....aux..... 
1. : ℕ
2. : ℕ ⟶ ℕ+
3. (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
4. ⇃(∃n:ℕ. ∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))
5. ⇃(∃n:ℕ
      ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))
      ∧ (∀j:ℕ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕj ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))  (n ≤ j)))))
6. a1 (∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))
∧ (∀j:ℕ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕj ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))  (n ≤ j)))
7. b1 (∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))
∧ (∀j:ℕ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕj ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))  (n ≤ j)))
⊢ <n, a1>
= <n, b1>
∈ (∃n:ℕ
    ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))
    ∧ (∀j:ℕ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕj ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))  (n ≤ j)))))
BY
(Unfold `exists` THEN EqCD THEN Auto) }

1
1. : ℕ
2. : ℕ ⟶ ℕ+
3. (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
4. ⇃(∃n:ℕ. ∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))
5. ⇃(∃n:ℕ
      ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))
      ∧ (∀j:ℕ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕj ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))  (n ≤ j)))))
6. a2 : ∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ))
7. a3 : ∀j:ℕ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕj ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))  (n ≤ j))
8. b2 : ∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ))
9. b3 : ∀j:ℕ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕj ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))  (n ≤ j))
⊢ <a2, a3>
= <b2, b3>
∈ ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))
  ∧ (∀j:ℕ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕj ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))  (n ≤ j))))


Latex:


Latex:
.....aux..... 
1.  n  :  \mBbbN{}
2.  B  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}
3.  F  :  (k:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[k])  {}\mrightarrow{}  \mBbbZ{}
4.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
5.  \00D9(\mexists{}n:\mBbbN{}
            ((\mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
            \mwedge{}  (\mforall{}j:\mBbbN{}.  ((\mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))  {}\mRightarrow{}  (n  \mleq{}  j)))))
6.  a1  :  (\mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
\mwedge{}  (\mforall{}j:\mBbbN{}.  ((\mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))  {}\mRightarrow{}  (n  \mleq{}  j)))
7.  b1  :  (\mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
\mwedge{}  (\mforall{}j:\mBbbN{}.  ((\mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))  {}\mRightarrow{}  (n  \mleq{}  j)))
\mvdash{}  <n,  a1>  =  <n,  b1>


By


Latex:
(Unfold  `exists`  0  THEN  EqCD  THEN  Auto)




Home Index